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THE THREE BODY PROBLEM 

The motion of three material  points under their mutual attraction 

from Newton's law i s  called the Three Body Problem. i 
1 

I propose to obtain the equations of this problem in the Hamilt- 

form. 

of the system of the three masses .  

Euler ' s  angles 4 ,  +, 8 in the customary manner 

I introduce relative axes which a re  the principal axis of inertia 

They are related to fixed axis by 
I 
I 

The Cartesian coordinates of the masses  relative to the principal 

axes a r e  defined by way of three coordinates r ,  B, L, which a r e  related 

in a simple way to the three distances r l ,  r2, r3 of the masses .  

These formulae involve three angles p,1 p2 p3 depending on the 

masses .  

cular configuration for which the ellipse of inertia is a circle.  

They are the angles of the triangle of the masses  in the parti- 

The elimination of the nodes is made in the usual way by elimination 

of the Eulerian angle 8 ,  and the Hamiltonian (12. 12) is obtained. 

relation of our coordinates with a variable introduced by Lagrange in 1772 

(Oeuvres, Vol VI) is shown, leading to simplification in the work of 

The 

I Lagrange. uL# 
The result of Lagrange, in the same paper , on the equilateral 

configuration is deduced from our Hamiltonian. 

Emphasis is put on the fact that the variables r and i ts  conjugate 

momentum pr occur in our Hamiltonian in a form essentially the same a s  

I in the Keplerian motion. It is, in fact, this circumstance which brings 

Lagraw's  result. 

But this leads to extensions to the general case. It leads to a 

simplified demonstration of the theorem of Sundman-Weierstras s that 

triple collisions can only occur when the total angular momentum vanishes. 

In fact, our r is essentially the variable used by Sundman. 

The coordinates B, L define the s h p e  of the triangle irrespective 

of i ts  size given by r.  

latitude B and Iongitude L, of a sphere of unit radius. 

They m a y  be thought of a s  polar coordinates, 

The special configuration with undetermined L is the pole. 

It is shown that these variables may be transformed into new 

variables p ,  A which can also be understood a s  points on another unit sphere 

iii 



This defines a conformal transformation of one sphere on the other. 

This can be done in such a way that the points which represent the 

binary encounters and lie on the equator in the B L repre sentation a r e  

transformed into the three vertices of a triangle with three right angles 

in the f3 X representation. 

The transformation is singular for these points and the singularity 

so introduced just removes the singularity in the original formulation of 

the problem. 

This provides for a symmetrical presentation of the geometrical 

aspect of the regularization which has been introduced by Levi-Civita. 

This present work i s  a greatly improved ve r s ionda  work which has 

been summarized already in: 

Vistas in Astronomy, 1955: Regularization of the Three- Body 

Problem. (Vol. I, p. 207) 

and had been published in 1952 "Coordonnges Syme'triques dans le 

Probleme des Trois Corps, I '  Bulletin de 1'Acade'mie Royale de Belgique 

(Classe des Sciences) vol. 28, 582-91 and 1218-34. Some additions had 

already been given in: 

Rggularisation dans la prob1;me des trois corps. 

de 1'Academie royale de Belgique (Classe des Sciences) vol 40, 

759, 767 (1954). 

Bulletin 
1 

In this former work the author had been able to use the principal 

axis only in the case where the three masses  were equal. 

Many useless complications result from this shortcoming. 

The theory can be illustrated by using some actual computation. 

have used a rather extensive computation by Car l  Burrau Astr.  Nachr 

no 4662 - 1913 for masses  m l  = 5, m2 = 4, m 3  = 3. = 0 because 

the masses s tar t  without speed. 

We 

The p 4) 

A B L diagram shows a near encounter around the origin while the p A 

curve gives a much more simple curve. 

somewhat different way a s  in the text and a r e  computed by 

The f3 X have been defined in a 

sin p = - t q 1 / q  

tan A = t 92/93. - 
Figures 1 and 2 show respectively the B L diagram and the p X one. 
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THE THREE BODY PROBLEM 

1. Geometrical preliminaries 

In a triangle M1M2M3 (figure 3 ) the three angles p1, p2, p3 

a r e  related to the sizes by formulae such a s  

M1M2 = 2R sin p3 

where R i s  the radius of the circle through M1M2M3. 

If we draw M3P3 perpendicular to M l M 2  we have 

M 1 P 3  = 2R sin p2 cos pl 

and 

M i 0  = 2R COS p1 

where M I P 1  and M3P3 cut in 0 a t  angle k2. 

Similarly 

P3O = 2R cos pl cos p2 

and 

P3M3 = 2R s i n p l  s inp2 .  

2. A special configuration of three masses 

Suppose that three masses  mlm2m3 a r e  located at  M1M2M3 
and that the orthocenter 0 of the preceding section i s  the center of 

ma s se s . 
We must have from (1 .4 )  and (1.3) 

3 (ml  t m2) cos p1 cos p2 = m 3  cos p 

or  from (1.5) 

(ml  + m2 t m3)cos pl cos p = m3 sin p1 sin p2 

which can be written in a more symmetric way 

1.1 

1.2 

1 . 3  

1 . 4  

1 . 5  

2 . 1  

2 . 2  

2 . 3  

This shows that the masses  a r e  proportional to the a rea  of the three 

triangles OM2M3, OM M OM1M2. 3 1’ 



These ratios a r e  equal to 

tan p1 t tan p2 t tan p 

ml t m2 t m 

3 -  - 

3 

and we have 

3 tan p1 t tan p2 t tan p = tan p tan p2 tan p 3 1 

be cause 

P1 + P 2  + P 3  = *- 
It follows that the angles pi a r e  

t a n p  = m i i 

mlm2m3 

Let us consider the moment of inertia 

relative to a line through 0, parallel to M M 1 2' 
Its  value, by ( 1.4) and ( 1. 3) is - 4 

2 2 4R2 k m ,  t m2) cos p 1 cos p2 t m3 cos2p 3 

2.4 

2 . 5  

2. 6 

2 . 7  

2.8  

From 1 and 2 

2 . 9  2 '  (ml t m2 t m3) cos p = (ml t m 2 ) sin p 1 sin p 3 

We have therefore 

m l  t m 2  t m  

sin p sin p 1 37 ps p1 cos p2 t cos p cos p cos p2 cos p3 

2.10 2 
4R 

but cos p = cos (a - p1 - p2) = sin pl sin p2 - cos p1 cos p2. 3 

W e  therefore obtain 

2 
3 '  4R (ml t m2 t m ) cos p1 COS p COS p 3 2 

which is a symmetrical expression. 

configuration, the ellipse of inertia is a circle. 

It follows that, for our special 

2.11 

3 .  'Introduction of rectangular axes. 

Using rectangular axes, center at 0 with OM as  y axis,  we 3 
have 

- 2 -  



x1 = -2R cos pl sin p2 y 1  = -2R COS p1 COS p2 

2 y2 = -2R C O S  p1 COS p 1 x2 = 2R cos p2 sin p 

x = o  = 2R cos p3 y3 3 

These equations can be written 
8 - Li 

lT - Li 

X. = 2R C O S  p. COS'- 
1 1 

yi = 2R cos pi 

with 

L2 = 8 -  p1 
2 

L3 - 0 .  7 -  
we should have L 

-z If the axes are rotated by an arbitrary angle 

( i  = 1,2,3) 

- 

i .  e .  

L - Li x. = 2R C O S  p. C O S  

1 l 2  

L - Li = 2R cos p1 sin z Yi 

A more symmetrical notation i s  obtained E by a rotatiod with 

L1 - p2 p3 28 

L2 - 

L3 - p1 p2 

7- 3-3-3 

p3 pl 48 
2- 3 - - - -  3 3 ! z -3 -3 
Li - p i + l  pi - 1  28i 

-2- --- 3 3-- 3 

3.1 

3.2 

3.3 

3 . 4  

3.5 

3 . 6  

- 3-  



W e  have then 

2ni Li 2 ni pi t1  pi- 1 Li t 1  ' Li-l - -'z - ' 3 - 3 + 3 = Z t T  

Li+l - i- 1 - n - pi -  z- 
And also 

3 .7  

3 .8  

3 .9  

3.10 

4. The fundamental identities 

The properties of the special configuration could have been 

obtained from the following identities which a r e  valid for any integer n. 

C s i n  n p cos n (L - L ~ )  = o 

E i n  n p. sin n (L - Li) = 0. 

i 
i 

1 

i 

4 . 1  

4 . 2  

Consider, for instance, 1; we have to show that 

Li q = 0 4 .3  
L Li 

-7- E n - (  - + pi) - sin n 
i 

This follows from (3,9) and (3,lO). For  n = 1 we have 

C m.x. = o r m i y i  = o 
1 1  

and for n = 2 

mixiyi = 0. 

W e  have also the identity 

4 . 4  

4.5 

4. 6 

- 4- 



- p2 We have, in fact, using p3 = T - p1 

sin 2n p (1 - cos 2n p2) t sin 2n p2 (1 - cos 2n p ) 1 1 
2 2 

1 = 4 sin n p  cos n p  sin p2 t 4 sin n p cos n p  sin p 1 1 2 1 

= 4 sin n p1 sin n p2 sin n(pl t p2). 

W e  obtained the announced identity by noting that 

3' sin n(pl t p2) = sin(nr - np,) = ( -1lnsin n p 

5. The principal a v s  in the general case 

Principal axes through the center of mass  0 a r e  such that 

zmixiyi  = 0. 

Let the principal momenta be 

2 2 B  z = c sin A = xmiyi  

2 B  
B = z m . x 2  1 1  = c cos T- 

2 2  c = c m i ( x i  t yi). 

This differs from the special case by the introduction of factors 

sinZ- in y and cosz in x. 

(3 .4 )  into 

B B' We obtain the general case by modifying 

B L - Li x. = 2R cos p. cos =Ces z 1 1 

B L - Li = 2R cos p. sin sin 
2 'i 1 

and we have as before from (2.11) 

It will be convenient to replace R by r by 

2R = r F  

and to wr i t e  

2 C = M r  

5.1 

5.2  

5.3 

5 . 4  

5.5 

5. 6 

5 .7  

5.8 

5.9 

- 5- 



with 

M =  

or alternatively 

M =  2 

From (2 .  7 )  and (5. 

2 3 1 cos p2 cos 3 
2(ml t m 

from (2.7) 

t m ) cos  p 5.10 

3' sin pl sin p2 sin p 

11) w e  may obtain 

5.11 

2 2 - -  - 
3 sin p 

1 t- m 
1 
m 
- 

2 1 

and the ref o r e 

1 -  1 2 2 2 - M (sin p1 t sin p2 t sin p ) 3 
t -  

1 t -  1 
m 
- 

1 m2 3 

or 

1 
1 2  

4 4 4 M2 1 1 sin p1 t sin p2 t sin p - 
3 -7 tEiiiii 

ml 

5.12 

5. 13 

5. 14 

1 1 
2 2 2 2 2 2 2 sin p2sin p3 t sin p sin p t sin p sin p = M 

3 1 1 2 7 - ( ~ 1 2  + 3 2 r m  1 2  

5. 15 
m l  

2 2 2 M3 2 sin p sin p sin p - 
1 2 3 - 8  Imlm2m3 

m3 t m  3 t  
- M3 1 m2 t m 

ml m2 

1 1 - 1  t (ml + m2 t m ) (- t- 
1 3 m  L M3 1 

=8 mlm2m3 

Comparing with (5.11) w e  get 

1 1 1 1 t -  m t -  - 2 - 
3 ml  t m2 t m 3 m2 K - rnl 

W e  have also 

3 -4 
M2 - 

t m l l m 2  

2 2 2 sin pl sin p2 sin p 

5.16 

5.17 

- 6 -  



and 

3 
1 t cos p cos p2 cos p 

- - 1 t -  
1 t -  1 

3 tTnpl t anp2  t anp3  sin p sin p2 sin p 

and from ( 2 . 2 )  and ( l0 )  

3' 
sin p sin p2 cos p 

1 -  2 - - -  M 3 m 

6 .  Relative coordinates 

W e  have by ( 3 . 4 )  and ( 3 . 8 )  

1 x3 = 2Rcos  p cos L-L3 = 2 R c o s p 3  cos ( L- L1 
3 - z -  '7 + p 2 - =  

1 z + p 2  
= - ~ R C O S T C O S  B p COS( L-L1 

5. 18 

5. 19 

4 

Similarly 

B L-L1 
x = -2R COSFOS p2 COS ( - v 3 )  z 2 

r 
B L- L 

= -R c o s z ~ c o s  ( L-L1 - p3 t p2) t cos( 1 - p2 - p3) 1 . z 2 
J 

- 
L 

The re for e 

X 
3 - x2 

B = -R COST 

B = R COS 

hs (L-L1 
2 

Lcos(L-L1 - 
2 

= 2R sin pl cos2 B sin L- L1 z 

- p2 

The computation for y can be done by replacing 2 L b Y T + + *  L 

W e  have therefore 

- 7- 



B L -  L1 

1 = 2R sinpl cos - sin - = r cos 5 1 2 2 *23 = x3 - x2 

B L -  L. 
1 

1 y 2 3  = y g  - y2 = -2R sin p sin- C O S  - = r sin 5 1 2 2 1 

We have for the slope .c 
B tan -z 

tan = - L- L, 
tan 1 

2 

and for the length of the side ri of the triangle (using (5 .8)  ), 

L 

and therefore 

r.  = r sin p I/ 1 - cos B cos (L  - Li) , 
1 i 

By differentiation of ( 2 )  we have 

sin B sin ( L  - Li) 

2 2  r sin p. s inB  s i n ( L -  Li) 

(" - 

1 dCi = - 
2,: 

or by (4) 
sin BdL - sin ( L  - Li) dB 

2dSi = 
1 - C O S  B COS (L  - Li) 

6. 1 

6 .  2 

6. 3 

6. 4 

6. 5 

6. 6 

The angles of the triangles.may be obtained from the slopes of the sides. 

One finds, for instance, writing 

- 8- 



cos x3 sin x2 - cos x2 sin x3 
2 2 

3 

tan(g - c2) = - S ~ ~ B C O S  B 

3 sin B sinx2 s inx  + cos Bcos x 2 cos x 

sin (x, - x,) 
= 2 s inB cosB  

o r  using the symmetric definition of the Li (3. 5) 

sin (a- v l )  
6. 7 

1 L2 + L3 
t a n ( c 3 - g Z )  = sin2B 

C O S ( T - ~  ) + COSZBCOS(L-  
2 1 

which gives for B = r I4 

5 ,  -5, = = - P I  

Let us write 

2 2  

2 2  

1 2  = 93 + 91 

r3 = 91 + 9 2  

and 'therefore 

and 

2 1  q2 = z  ( r l  - r2 +.r3) 

We know that 
2 2  2 2  2 2  4 4 4 

16q2q:q:q: = 2 r  1 2  r + 2r2r3 + 2r3rl - = I  - r 2 - r  3 

6. 8 

6. 9 

6. 10 

6. 11 

- 9- 



is sixteen times the square of the a rea  of the triangle. 

Section 2 by a process which involves a multiplication of the x and y by 

cosT and sinZ , 

1/2 sin B. 

Now the triangle has been obtained from a special configuration of 

B B This involves multiplying the a rea  of the triangle by 

The a rea  of the triangle for the special configuration and therefore 

also for the actual triangle does not depend on L. It follows that 

r2  sin B 

does not depend on the coordinates r ,  B, L, but only on the masses .  

In order to find its value we can choose special values r = 1,  

B = rr/2 , and for these values we have 

r = sin p i i 

We find 

2 2 2 2  
1 6 s  9 9 9 4 1 3 = 2 1 sin2p sin p 3 -1 sin p I 2 4 2  r sin B 

and bv (5. 15) and (5. 14) 
7 

2 2 2 
3 = 4 sin p sin p2 sin p 1 

by (5.17). 

We have therefore 

6. 12 

6 .  13 

6. 14 

Alternatively, we have from the fundamental identity (4. 7 )  applied to (4) 

-10- 



2 r 2 2 sin pl sin p2 sin p 

L 

and therefore 

4qql q2q3 sin B = 

6. 15 

6. 16 
2 2 2 

r l / t anp l  + r2/ tanp2 t r3/ tanp 3 

When we know the three distances r r r 

we have just given, to find r and B. 
it is possible, from the formulae 1 2 3  

W e  shall see in the next section that L can be determined also. 

Then we a r e  able to find the rectangular coordinates of the three 

points from (5. 5) and (5.6) .  
W e  have also 

= f-. 2 sinpl sin p2 sin p3 r 2 

2 1 2 2 2 4 sin pl sin p2 sin p 
- - r 2 = M z  r .  

mlm2 M 

7. Kinetic Energy 

Let v be the relative velocity of M as regards M2. Then the 1 3 
kinetic energy relative to the principle axis is 

m m v  + m m v  + m m v  2 2 2 
2 3 1  3 1 2  1 2 3  2T = 

m l  + m2 t m3 

6. 17 

7.1 

In fact, we have 

-11- 



0 = ( m  k t m 2 g 2  t m  2 ) 1 1  3 3  

= (ml  t m 2  t m 3 )  (m G~ t m2g2 2 t m  R 2 ) - m2"3(~13 - i ~ ~ )  2 
1 1  3 3  

2 2 - m3ml (S1 - A3) - m m (2 1 2  2 - 5 )  

from which the expression of T follows easily. 

v. has two components, one radial 
1 

d r  

dt 
i ' 

the other transversal]  

d G i  
r -  

dt i 

7 . 2  

7 . 3  

7. 4 

If we want to consider, not velocities relative to the principle axes, but ab- 

solute velocities, we must add the velocities due to the angular rotation 

w w w  
X Y Z  

of the principle axis. 

This introduces components normal to the plane of the triangle and 

also an additional component 

r .  w 
1 2  

in the transverse direction, Writing 

T = TI t TI' t wZK' 7. 5 

where 

7. 6 2 2 2Ti1 = Aw2 t Bw t C w Z  
X Y 

we have to compute the kinetic energy T '  relative to the principle axis and 

the relative angular momentum 

2 
aT' - 

K ' = z - ~ i ; ;  - m l t m  2 3  t m  7.7 
1 



8 .  The Relative Angular Momentum Kt 

From (6 .  6) we have 

But, from (2.  7) 

i 

2 m m m m  1 2 3  i 

and, therefore, the fundamental identity (4. 2) with n = 1 gives 

sin 2pi sin ( L -  L.) = 0 c 1 

while (4. 7) 
P 

3 -  2 sin 2 p  = 4 sinp sin p s i n p  i 1 2 

We have, the refore, 

, 
3 r s inB  L sin p2 sin p 

or using (5. 11) 
3 

9 .  The Relative Kinetic Energy T '  

W e  have to compute 

2T' = 

3 m t m 2 t m  1 

From (6 .4 )  we have 

 sin^  cos(^- L.) B +  cos^ sin ( L -  Li) i i 1  1 - t -  
r 2  

i 

r 
i 

i 
- -- 

1 - COS B COS (L- Li) 

8 .  2 

8 .  3 

8 .4  

8.  5 

8.  6 

9.1 

9 . 2  

-13- 



We obtain 

2Tl (1- COS B COS ( L -  Li) = \ I F 3  1 sin2CL 

2 m t m  t m  

t r’LsinB C O S ( L -  L ~ )  h t c o s B  s i n ( L -  L.)  LJ 
1 

r 2 1 ‘ ‘ 3 .  2 [sin B cos (L- Li) B t  cos B sin ( L- L1) L] t [sin B f., - sin ( L- L. ) B] 
t -  

4 1 - C O S  B C O S  ( L -  Li) 

The last fraction can be simplified 

-2 P - r L l t c o s B  cos(L-Li ) )  

4 

9. 3 
and become s 

L 2 - 2 s i n B  sin(L-Li) 6 +. B2]. 9 .4  

Using the fundamental identity we obtain 

2 r2  - 2  2 T’ = %  (1: t - ( B  t i  ) )  
2 4 

10. The Eulerian Angles 

9. 5 

When the position of the principle axes is referred to fixed axes 

through the Eulerian angles 8 ,  + , p ,  the angular velocity is 

w = -4 sin e c o s +  t i sin + 
X 

t e 10. 1 w = -9  sin 8 sin + t 8 cos + 
Y 
z = + o s e t $  

The angular momentum K is fixed in place and it is convenient to adopt its 

direction for the z component of the fixed axes. 

Then the angular momentum has relative components 

K x  = -K sin 8 cos + 
K = K sin 8 sin.+ 

Y 
K = K C O S ~  . 10.2 Z 

This is the sum of the relative angular momentum K ’  along oz and of the 
component 

10.3 
Z 

A w  , Bo , C w  
X Y 

- 14- 



due to the motion of the axes. 

These quantities have such simple expressions because the axes a r e  

principle axes of inertia. Comparing with (7 .5 )  and (7. 6) w e  see that 

aT 
Kx =aw 

Ky =aw 
X 

aT 

Y 

- aT 
K Z  -aw 

Z 

11. The Elimination of the Nodes 

10.4 

Introducing canonical moments conjugated to the Eulerian axes, and 

using (1 0.4) and (1 0. 1) we have 

aT = -Kx sin 9 cos t K  sin 9 sin+ t K Z  cos 9 
Po = T$- Y 

aT = - K ~  s in+ t K cos 4 Pg - - a6 
- 

Y 

1 . 1  

Comparing with (10 .2)  we obtain 

P+ = K 11.2 

Pg = o  11 .3  

p+ = cos 
11.4 

Let us replace in H, 9 from Eq. (4). 

of this elimination. We have 
Let us call for a moment R the result  

a R  = a ~  1 aH 

dR - aH cos9 aH 
- - F +  + p  s ine  TT * 

a9 ap+-qZsT ae 

9 

11.5 

11. 6 

But we wish to use this relation for the particular choice we have made of 

the fixed z axis. In that case the canonical equation 

-15- 



dPe aH d t = - a e  11.7 

together with (3) shows that 

aH - = 0 .  ae 11. 8 

Then the derivatives of H and 'R a r e  the same and there i s  no reason to 

maintain a difference of notation any more. 

12. The Hamiltonian 
Besides eliminating 0 from (11.4) we have also to replace in T the 

derivatives by the momenta. 

We have, using the expression (8. 6) and (9. 1) of K' and TI 

In order to compute 

TI +c  w2 t wzK' = TI t- C (wz t-) Kl 2 -- K I 2  

2 "  2 C 2c 

t - ( B  t COS 

C 
2 r2 92 

2 

we have to use (1 1.4) 

K = K ' t C w Z -  
z - p4J 

which gives 

12.1 

12.2 

12.3 

12.4 

12.5 

12. 6 

-16- 



. 
It remains to compute L. We must eliminate oz from (3) and (5). 

This gives 

2 '  sin B) L r 2 s i n B p  = M ( 1 -  M r  - 
. 4 4  C 

PL - - 
2 c  

o r  using (5.9) 

p+ M pL - - sin B =- cos2 B i . 
2 4 

12.7 

12:8 

The remaining terms are 

2 + - B w  1 2 - 1  - -  ( -+-  K 2  X - - Ao sin t) )12.9 B 
z 2 x 2  y 2  A B 2 c  s in2 cos 

f r o m  (5. 2),(5. 3) and (10.2), o r  

2 2 B  2 2 B  
z cos +cos Tt sin + sin 2 2  

p+ - p+ 
2 B  2 B  z sin cos 4MrL 

2 2  3 - - .=. k 1  tcos+)( l  t c o s B ) t ( l  - c o s  +)(l  - c o s B )  
M r  sin B 

2 2  

M r  sin B 
- -,- (1 t COS B cos +) . 12.10 

Collecting our results the Hamiltonian becomes 

H = T - U  12.11 

2 2  

H = i b 2 + 4  cos B cos 4) - 71/ 
2M r 7  

12.12 

where 

1 

1 

r m. s i n p  1 - COS B cos (L- L ~ )  
1 i 

Gm1m2m3 c - - 12.13 

-17- 



1 3. Canonical Equations for the Eule rian Angles 

When the motion relative to the principle ax i s ,  i. e. , the relative 

coordinates r ,  L, B, have been found the Eulerian angles a r e  obtained from 

the canonical equation 

p ( l + c o s B c o s  +) 
13. 1 * = - - -  aH - 2 s inB  (p, -- p\cI sin B) + .- p+ - + 

dt aP+ M r  cos B 2 Mr M r 2  sin2 B 

2 2  aH - dp4 = -  - -  - .* cos B sin 4 
dt a + M r  sin B 

and 

A = a H  = p4J (1 +cosBcos+)  
M r  sin2B 

ap+ 
dt 

together with 

p = p  cos e + +  
which gives 8 .  

It wil l  be convenient to introduce modified momenta such a s  
- '+ sin B . - PL - PL - - 

2 

Then i f  R is the Hamiltonian H written with the modified momenta we 

shall have _- 

as modified canonical equation following (1). 

-18- 
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14. U s e  of Modified Momenta 

For  the sake of generality, let  us write q1q2q3 for r L B 

and let us define modified momenta 
- 
Pi = Pi - AiP+ * i = 1 ,2 ,3  . 

Here we have 

sin B 

A 3 = 2  - 
A 1 = O  A 2 = 0  

Let A be the Hamiltonian H written with the modified momenta pi. 
the canonical equations a r e  

Then 

dqi - aH - aH - - - - -  
dt aPi a& 

14. 1 

14. 2 

14. 3 

From these equations we deduce the modified canonical equations. 

We have 

14. 5 

o r  

We may write A o r  more explicitly ik 

aAi 

9 9 89’ aq 
k 

A i k = - -  aAk 

14. 6 

14. 7 

and we obtain the modified canonical equations 

-19- 



Actually all derivatives vanish except 

aA3 - d sin B - cos B 

a q Z - d B 2 -  2 

and all Aik vanish except 

- cos B 
ABL = A  = -A 3 2 - 7  - 

9 9  9 9  

In general, (13. 7) should be written 

14.8 

14. 9 

14.10 

14.11 

In the following we shall generally suppress the bars and write p. for the 

modified momenta. 
1 

15. Change of Coordinates 
i t  Let us replace qi (i = 1,2,3) by a new variable q . We can define 

new modified momenta p by 
i '  

15. 1 

and the new A kt  will be obtained by 
9 4  

k A dqiA dq = A it . kt cisL'/\ dqk' 
9 9  4 9  

which means 

k i '  k' i '  k' A k(dqi6qk -6qidq ) = A  i l  k ,  (dq 6q - dq dq ) . 
q q  9 9  

15. 2 

15. 3 

- 20- 



16. Restriction to Motion in a Plane 

The equation (13.2) can be written using (13. 5) 

p sin 9 cos B sin 4 fb 
dt Mr';sinLB 

This shows that i f  a t  some time 9 = 0 it w i l l  remain null a t  any time. 

This means that the three bodies will remain in a plane. 

We can therefore rest r ic t  the problem to plane motion and such a 

restriction i s  justified, i. e. , when imposed it will maintain itself auto- 

matically. 

In the case of the restricted plane motion it is no use to know the 

Ai but simply the A . 
99 

Also the angles + and 4 a r e  not defined but only their s u m  and we 

= p+) have from (13.2) and (13.3) with (p  + 

16. 1 

dt MrLcosLB 

17. A Variable used by Lagrange (1772) 

The velocity of M1 a s  regards to M3 has rectangular components 

- OzY31 
&3 1 u = -  

31 dt 

dy3 1 
i- wzy31 

- 
v31 - 7 

16. 2 

17. 1 

The variable introduced by Lagrange has been put in a more symmetrical 

way by the editor of his work, Serret ,  Oeuvres vol VI, p. 329. 

shown to be the same for any permutation of the indices and may be 

written 

It i s  

= x23 u31 - x31 u23 "23 v31 - '31 v23 

We shall find its expression is our notation. 

te rm independent of wz; 

We have from (6.1) for the 

-21- 



2 r  2 s inp l  s i n p  (cos 2 B  7 t sin 2 B  2 

2 dL - -  3dt  - r sin p1 sin p2 sin p 

dL sin L-L1 cos L- 12 

-sinLWL2 cos 1-11 
2 Z 2 d t  

2 z 

because (3.8) 

3 '  
= sin (p, - a) = - sin p L2-L1 sin 

2 

The term in o is minus twice z 

12- =J cos - sin 
2 2 2 

-2r  2 sin pl sin p2 sin- B 

We have therefore 

2 dL 
dt 

p = -r sin p sin p2 sin p ( - + 2wZ sin B) 1 

2p sin B 
1 sin p2 sin p3 ( *  cos B t 4 2 

dt M r Z  1 = -I sin p 

f rom (12. 61, (8. 6) and ( 5 . 9 )  . 
18. Lagrange's Variable in Terms of r. and their  Derivatives 

1 

By differentiation of the expression (6.4) of r 2 , one obtains 

17: 3 

17. 4 

17. 5 

17. 6 

2 r l d r l  'n = 4 1  -cosBcos(L-L1))-  d r  t sinBcos(L-Ll)dBtcosBsin(L-Ll)dL . 
r sin p1 r 

18. 1 
By multiplying by 

cos (L-L3) - cos (L-L2) 

and adding the three analogous equations we have 

r d r  1 1  

r sin p COS B 

cos (L-L3) - cos (L-L2) 
dL =I 

2 ' 2  
3 1 

2 sin p sin p2 sin p 1 

18.2 

- 22- 



o r  using (6.4) 

2 2  2 2  
d L = c  (r2/sin p2) - ( r3 /s in  p 3 rldrl 

2r'sinp 1 s i n p  2 s i n p  3 r2 sin2p 1 cos2B 

o r  
2 2  2 2  
2 3 3  1 1  

r 

(r  sin p - I  sin p,) r d r  

3 3 2 sin pls in  p2sin p cos B 3 
=I 4 3 

18. 3 

18.4 

This gives for Lagrange's variable 

2 2  2 
( r2sin p3 - r3sinp2) rldrl/dt 2 s i n p  sinp' s i n p  

3 p  s i n B .  18. 5 1 
M ICI 

2r'sin'p 1 sin'p 2 s i n L p  3 

This expression is muchmore  simple than the one (p. 329), formula (21) 

given by Lagrange. 

19. Lagrange's Equilateral Configuration 

In the same paper (1772) Lagrange has investigated the case where 

the shape of the triangle remains invariable, i. e. , in our notation when B 

and L do not vary, although the scale r may be variable. These are plane 

They may be obtained immediately from our Hamiltonian configurations. 

(12. 12). 

The conditions to be fulfilled (with p = p ) a r e  obviously 
$ 4 )  

au , - = o .  au - = o  
aL aB 

19. 1 

Quite generally, we have 
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When r1 - - r2 - - r3' these expressions vanish from the fundamental 

identities (4. 1) and (4. 2) (for n = 2). 

Then the motion is restricted to a variation r and + with Hamil- 

tonian 
2 

uO t -  
2Mr r Pr + 2M 

19.4 

where U i s  a constant. 
0 

This is the Hamiltonian of the Keplerian motion. It follows that in 

this case each of the three bodies describes elliptic motion with the same 

eccentricity and axis while the triangle M M M 
triangle. 

remains an  equilateral 1 2 3  

The values Bo , L in this case a r e  given by 
0 

3 sin p sin p2 sin p sin B~ = 6 1 

3 1 t cos p1c0s p2 cos p 

19. 5 

which follows from (6. 14). 

W e  have used 

2 2 2 2 2  
r l  = r 2  = r3 = 2ql = 2q2 = 2q3 = - q 

3 

and (6. 15) and (5. 18). Lo can be obtained from 

IJ.1 s inp sin p2 sin (p2 - cos  Bo sin(L-L3) = 1 

3 1 t cos plcos p2 cos p 

20. Canonical Transformation for the Keplerian Motion 

19. 6 

We shall need the theory of the canonical reduction of the Keplerian 

motion. 

Let the Hamiltonian be written 

20.1 

We had in Sec. 19 
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2 

2M 
20.2 

Let us  introduce a new variable q, p in place of r 9 Pr - 
We must introduce a function S (the determining function) of r and 

p and them we have 

so that 

as 
q = *  

prdr = pdq - d(pq) + dS 

20.3 

which is the condition for the transformation to be a canonical transfor- 

mation. 

We choose p such that 

20.4 

20.5 

2M r r r 

h is a constant: the energy constant. 

Then 

S = s p  r dr  =p li-' dr . 
r 
0 

20.6 

20.7 

The limit of integration r 

have 

is a constant or a root of the radical. Then we 
0 

- P  
d r  

2 aP -A+ (6 +p) r + hr  r q="=wi 0 

The inversion of the integral gives 

a+p (1 + e  cos q 4-2h  - ) r =  - 2h M 

20.8 

20 .9  

-25- 



with 

20.10 

20.11 

W e  notice that 

is the eccentric anomaly, and 

20.12 
- 2h 

is the semi-major axis. 

9 -  
W e  must take into account that A i s  a function of p 
In order to do this we must admit that + and p 

, and that 

will also be trans- + 
p+ 0 

formed into new variables, say, + o ,  

contains also the old coordinates + and the new momentum p . 
9 0  The corresponding canonical transformation will be the same as  

far as r ,  p , q, p a r e  concerned, but it will be extended to a transforma- 

tion of + and p by 
r 

(P 
as 
a4 

t- - - 20.13 

+,=+t- as . 
ap(P 0 

20.14 

Thiq gives 

but 

- 
p+ - p + o  

20. 1 

20.16 
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therefore 

The Hamiltonian reduces to 

c p o  = cp -4xJ* p+O 

r 

P 

a(l + e c o s q  F .- ) 

H =  

with p = 0 and 

which gives Kepler equation 

nt = E - e sin E 

with 

n =v%' . 

c p 0  is a constant - 
9-cpo=- z 

21. Extensions to the General Case 

+ h  

20.17 

20.18 

20.19 

20.20 

20.21 

20.22 

In the general three-body problem the Hamiltonian (12. 12) is still 

of the Keplerian type (20. 1) a s  far a s  the variable r and pr a r e  concerned, 

but the expressions& and @ a r e  more complicated functions of the other 

variables.  

We have 

f- (Pg + ) +  .y ~ l + c o s r , c o s  q] Ll. 1 
2M M coszB Msin B 

and 

21,2 
1 

m.  sin p. 1 - cos B cos (L - Li) 
1 1 

0 = G m m m  1 2 3  

i Let us call q these variables other than r ,  and the corresponding momenta 

pi. Then the A. and 8 a r e  functions of these variables: 
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21.3 

21.4 

We shall make the Keplerian canonical transformation of the preceding 

section but we shall imagine that the o&l and6  a r e  

0 
s Pi 1 

0 

1 
i. e. , we have replaced the old momenta pi by the new momenta p. . 

pp shall be defined by 

i The new coordinates q and the corresponding new momenta 
0 

and 

Pi = Pi 0 + 

r aq’ 

22. The Sundman- Weierstra ss  Theorem 

21:5 

21. 6 

21.7 

21. 8 

According to the preceding section, we see that the formulae 

(9) and (10) of Sec. 20 a r e  valid in the general case with the understanding 

that and 8 may be variable according to (21. 1)  and 21. 2). 

Then formula (20. 9) shows that r cannot vanish except i f  e be- 

And according to (20. 10) this can comes equal to i ts  limiting value t l. 
only occur i f  “4 vanishes. 

Now from (21.1) is the sum of non-negative te rms  and it can 

vanish only i f  each of the te rms  vanishes. 

This means that 

P+ = 0 
and also 

pB = 0, pL - - p+ sin B = 0 .  
2 
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Now 
1 t cos B cos + 

sin2 B 

was obtained as 
2 2 2 B  

cos IC( c o s 2 g  + sin t$ sin 2- 
2 B  2 B  

7- 2s in  7- cos 

and is essentially positive; therefore we must have 

I 

P +  - - + p + = o -  

This i s  Sundman's theorem. 

23. Change of Coordinates -- Cartan's Result 

Let us take r r r as coordinates in place of r, B, L. 1 2 3  
from 

sin B cos (L - Li) dB t cos B sin ( L  - Li) dL d r  d r  . 

r r 
1 2- = 2 -  + .  

1 - COS B COS (L-  Li) i 

obtained by derivation of (6. 3) and the relation 

Then 

23. 1 

23. 2 

between the momenta o r  the generalized momenta we have 

s inB cos(L-Li) cos B sin(L-Li) 
i pr =I? i * P B = c -  'ipr 

r 2 l-cos B c0s(L-Li) 2 l-cos B COS (L-Li) 

23. 3 

from which w e  deduce 

2 sin 2 B c o s ( L - L i ) c o s ( L - ~ )  t sin(L-Li) sin(L-Lk) 'irkP,.', 
2 PL i k  

PBt'-= cos B 'I ( 1 - c o s B  cos (L-L i ) ) ( l - cosB  cos(L-%)) 4 
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C O S ( L ~ - L  ) - C O S  2 Bcos(L-Li)cos(L-Lk) * r . r  1 k r pi r pk 
k 

23.4 
L/' (~-cosB~O~(L-L~))(~-COSBCOS(L-L~)) 4 

U sing 

we obtain 

2 r. 
1 

COS B COS (L-L.) = ,1 - - 
1 rL sin'p 

i 

23. 5 

2 2 2  2 2  2 P 
Ik 23.6 

4 

(Li-%) - 1 t (ri / r  sin pi) t ( r k / r  sin pk) 

4 2  2 
k r2 r t  / r sin p. sin p 

1 1 

and there for e 

PriPrk 

i k  

2 2 2  2 2  2 2  2 
( -2r  sin p sin p2 sin p t r. sin pk t rks in  p.) 

1 r r  3 1  

23. 7 (ijk) 

The last t e rm using (6.4) and the relation between the p. becomes 
1 

2 2 2  PriPrk 1 1 sin pi cos p sin pk (ri - r j  t rk) 
r r  j 

(ijk) i k  

Then using (5.12) and (5.18) we have 

23.8 

This expression has been given by Elie Cartan ("Les Invariants Intggraux, 

p. 183, 1922) in the case p + = p+ = 
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It has been found without elaborate computation in the following 

way which gives a nice geometrical interpretation of the results. 

The momentum mV. of the mass M. is shown to be a geometrical 
J J 

sum of two vectors, one called p along MiMj, the other, pr along r. 
MkMj . 1 j 

In this way the systems of all momenta is equivalent to zero as 

it should. If p is not assumed to be zero, it would be equivalent to a 
couple -- the theory of Cartan applies to that case but Cartan did not 

+ 
car ry  through the calculation. 

Now from geometry 
2 2 2  
i j k  r - r . t r  

cos (MiM M ) = 
j 2rirk 

so that 

2 'r. 1 2  prk 2 2Pr i vj =(---&- ) t ( -  m 1 t -  m 
j j j 

The expression of the kinetic energy follows 

23.10 

23.11 Mk' - - prk cos(M.M. 
m 1 J  j 

immediately. 

It is obvious that the transformation is the same for momenta or  

modified momenta so that the general case follows from the case when 

p+ = 0. 

We could therefore dispense with the computation a t  the beginning 

of this section by using Cartan's result. 

24. The Kinetic Energy in Terms of the Derivatives of the Distances 

W e  shall transform Cartan's expression (23.9) of the kinetic 

energy (or  more strictly, of the part of the kinetic energy not involving 

p 
the canonical equation 

- aH 

and p ) by introducing the derivatives of the velocities obtained from 9 4l 

j 
cos Mk cos M 1 1 

m mk P r t  j m j prk * 

= (  - +--)Pr* + 
k i  'i-x 1 m j 

In order to solve for the p we have to consider the determinants r i 

24.1 
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1 + -  1 - 
m2 m3 

cos M3 

m3 
g =  

COS M2 

m2 

cos M3 

m3 

1 +- 1 
7 

m3 ml 

cos M1 

ml 

cos M2 

m2 

cos M1 

ml 

1 + -  1 - 
ml m2 

or developing 

2 sin M1 
l +  l +  11 1 1 

( -  +-I(,-+ - 
m1m2 m m  3 1  m m  m2 m3 mi 2 3  

or 

3 mlm2 mlm3 mlm2 m 

cos M2 cos M1 COS M3 cos M2 cos M2 - + (-- 1 
m m  2 1  m m  m2 mlm3 2 3  

2 sin M 
1 1 1 1 (---+-I(- 

m2 m3 ml 

1 1 

m2m3 

cos M3 sinM1 sin M2 
- cosM3 

mlm2 
+ ( 

m3 

1 

m2m3 

cos M2 sinM1 sin M 
1 -  - cosM2 ( m m  + 

m2 1 3  

Thus 
2 sin M3 2 sin M2 2 sin M1 

+ + 15 
ml m2 m3 

( 
1 

24.2 

24. 3 

24.4 

24. 5 
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o r  using the notation (6.8) and elementary properties of triangles 

2 2 2 2  2 2 2 
'1 

( -  
4n q1q2q3 

ml m2 m3 2 3  
2 2 2  
1 2 3  

1 

m m  
1 s  g =  

r r r  

o r  from (6.17) 

2 g = 4Mr 

2 2 2 2  
q1q2q3 zzz 
1 2  3 r r r  

l2 1 

m m  2 3  

Then the kinetic energy is 

+- Y L  
2g L m m  2 3  

The first term is 

- 2 1  cos M3 il i2 . I 

or from (6.17) 

M 2  

2 
- 3  . s  

while the second term is (using (5.17) ) 

24. 6 

24.7 

24.8 

24.9 

24.10 

2 2 2  i 2 2  + i  + i 3 - 2 i l i 2 c o s ~  2+ i c o s ~ ~ - 2 +  i  cos^^ 
M 1 2 3  1 2 1  3 -  2 3 3 1  

r r r  

2 2 2 
3 24.11 

sin p sin p2 sin p 1 

This expression can be more  conveniently written using q q q 
place of r r r 

(and q) in 1 2 3  
It gives for the kinetic energy 1 2 3' 
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24.12 

Of course 

sci = 914, + SZci, t q3ci3 - 
Introducing polar coordinates, for instance, 

q1 = q cos p cos h 

= q cos p sin A 9 2  

q3 = q sin p 

we obtain 
2 2  r r r q 2  ( b 2  t cos p x M . 2  M 1 2 3  

2 +-2 2 r  sin2plsin2p sin2p 3 
- r  

2 

25. Regularization of Binarv Encounters 

24.13 

24. 14 

24.15 

Let u s  use r ,  p ,  X in place of r ,  B, L. Let 

be expressed in te rms  of p X from formulae (24. 14), (6 .  8) and (6.  15). 

The kinetic energy is 

L L L 
3 sin p sin p sin p 1 2 2 2 

Turning back to momenta (or  generalized momenta) and introducing the 

other te rms  of the Hamiltonian (2. 11 ) we obtain 

25. 1 

25. 2 

25. 3 
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2Mr' M r  sinL B 

- G m l m 2 m 3  r 

2 r 

of course, B and L must be given in terms of P A using (6.14) and the 

ratios r./r must be given in te rms  of these same variables. Let 
1 

2 = (H-  h) f ( P ,  A )  

where h is the constant value of H because 

Then generally 

and the last term vanishes in the equation of motion. 

If we write 

dt = f(P,A ) d s  

we have 

and similarly 

25.4 

25. 5 

25. 6 

25. 7 

25. 8 

25.9 
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The simplified Hamiltonian%& can be used with the understanding 

that it is used with a different independent variable s which may be 

called the regularizing time. 

The real time can be obtained afterwards by computing 

t = J f ( p l h ) d s  25.10 

It is obvious that singularitie s of binary encounters have disappeared from 

the new Hamiltonian. 

1 t  c o s B  cos L/J 
2 2 

1 
sin2B 

25. 11 

where 
2 (m m r r t m  m r r t m  m r r ) q  2 3 2 3  3 1 3 1  1 2 1 2  

F(P1 1 = 25.12 

26. Geometrv of the Transformation BL+ Oh 

The coordinates BL can be considered as  polar coordinates on a 

sphere of radius one. B is the latitude, L the longitude. This interpre- 

tation is the obvious one. The special configuration of Sec. 2 for which 

B = a / 2  and L is undetermined is represented by the pole of the sphere. 

Every triangle is represented by a point with B > 0, i. e . ,  by a 

point of the half North Sphere. 

But the same values of the distances ri could be obtained by re-  

versing the sign of B so that negative values of B could be used with the 

understanding that the representation of the sphere is twofold, 

The singularities of the problem a r e  the binary encounters for 

which one of the distances r.  vanishes. 
1 

From (6.1) it is obvious that the representative points lie on 

the equator B = 0 with longitudes L 1, L2, L g '  



Similarly, the coordinates ph can be understood as points on 

a sphere of radius one. 

The equation (24.14) shows that 

a r e  the corresponding Cartesian coordinates. 

In fact the coordinates p ,h may be defined from these Cartesian 

coordinates after an arbitrary rotation without introducing any change in 

the form of the Hamiltonian. 

The value r = 0 is obtained only when q = q3 = 0.  Similarly, 

the other binary encounters are represented on the sphere @h by three 

points which a r e  the vertices of a triangle with three angles of r / 2 .  

1 

Every configuration is represented inside of the triangle, but an 

equivalent representation occurs when the sign of any of the q 

so that each configuration is represented in eight different places. 

is changed i 

It is obvious that the transformation of one sphere on the other 

just defined is a conformal transformation; the change of scale from one 

to the other may vary from place to place but is indifferent to orientation. 

The points which represent the binary collisions a r e  singular 

points of the transformation. 

in the BL sphere describes the sides of the triangle in the 81 sphere. 

At the vertices the angle is reduced to the ha l f .  

In fact, a point which runs along the equator 

It follows that points which pass through the vertices along one 

of the sides and pass through the singular point correspond to points 

which reach the point of longitude L. and rebound, making a complete 

change of direction of 2rr. 
1 

This type of regularization is well known from the work of 
Thiele in special cases,  and of Levi-Civita in the general problem of the 

three bodies. If  we consider sufficiently small regions we may say that 

elliptic motions with the singular point a s  a focus in the BL sphere a r e  

transformed into ellipses with center at the singular point on the @x' 
sphere. 
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27. The Modifying Terms in the Momenta 

What we have obtained applies to modified canonical momenta a s  

was explained in Sec. 14. We have explained in Sec. 15 how the modifi- 

cation A. or the associated A is transformed when we change coor- 

dinate s. 1 9192 

The latter quantities a r e  the only ones which a r e  needed when 

the problem is restricted to plane motion. 

Let us consider first  the use of rlr2r3 as coordinates as in Sec. 23. 

We have from (15.1) and (14. 2)  

1 
3 - s inB dL = A drl  t Ar d r2  t Ar dr 

2 rl 2 3 

which gives from (18. 4), for instance, 

2 2  
2 sin B 

cos B 

- r3 sin p 
2 2  r sin p 2 
4 3  3 3 4 r  sin p sin p sin p 

r l  A =  
2 

3 
rl 

1 2 

The value of B in terms of r r r i s  given in (6.  14). 
1 2 3  

q3 of (6. 8) with 1 ’  9 2 ’  If we use the q 

we find 

A = 2(Ar t A r  ) q 3  . 
93 1 2 

2 7 . 1  

27. 2 

27. 3 

For  the variables q P A we have 

A d q t A  dp t \ dX =Aql(dqcosp cosh - q s i n p  cosh  d p  - q c o s p  sink d h )  
9 P 

tAq2(dqcosp sinh - q s i n p  sink d p  t q c o s p  cosh d h )  

t Aq3(dq s inp  t q c o s p  d p )  27. 4 

which gives 

-38-  



A = O  AX = - A  9 + A  q1 
9 91 92 

A =q(-Aq s inp  cosX - A s inp  sin1 + A  cos P )  . 
1 9 2  q3 

B 
27. 5 

When the variables r, A a r e  used as in Sec. 25 the values of A and 
I P 
1 A a r e  not modified. This can be seen through a transformation A 

1 
9 p  + r P h .  

Writing for a moment A(r) when the variable r is used we have B 

A dq + A dp + A A  dh  = A dr  + A(l)dg  + 4 r ) ( d h )  27. 6 
q P r P 

I 
but A = 0, therefore 

9 

Similarly the A a r e  found from (15. 2). 
9 9  

One finds 

2 

3 r6 s inB COS B sin3p sin3p sin p 
c r3dr1A dr 

r r r  1 2 3  

1 2 

dLAdB = 
3 

From 

aAL - ALB = - - - - $ c o s  B 

I one finds using (7.14) 

27. 7 

27. 8 

27. 9 

3 r r r  r 
- 1 2 3  A _ -  

l l r 2  qq1q2q3 4r4  sin2p 1 sin2p 2 sin2p 3 

and from 

27.10 
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2r r r - 1 2 3  9 3  A - -  
9192 qr4sin2p 1 sin2p 2 sin2p 3 

and finally from 

2 f  ( P A  ) C O S P  
2 2q r r r c o s p  1 2 3  - - A =  p h  r4sin2p 1 sin'p 2 sin2p 3 sin2p 1 sin2p 2 ein'p 3 
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27. 1 1  

2 7 . 1 2  

27. 13 
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